Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2012

Further Mathematics Level 2 Paper 2 Calculator

Friday 1 June 2012 1.30 pm to 3.30 pm

For this paper you must have: a calculatormathematical instruments.

8360/2

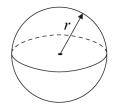
Examiner's Use Examiner's Initials Pages Mark 3 4 - 5 6 - 7 8 - 9 10 - 11 12 - 13 14 - 15 16 - 17 18 - 19 20 - 21 TOTAL

Time allowed

• 2 hours

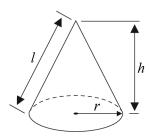
Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.


Information

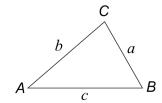
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet


Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$


Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

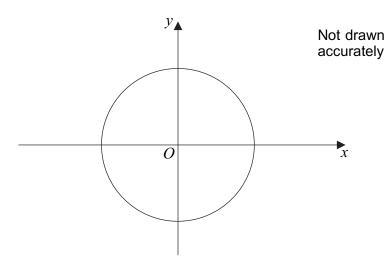
Area of triangle
$$=\frac{1}{2}ab\sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation


The solutions of
$$ax^2+bx+c=0$$
, where $a\neq 0$, are given by $x=\frac{-b\pm\sqrt{(b^2-4ac)}}{2a}$

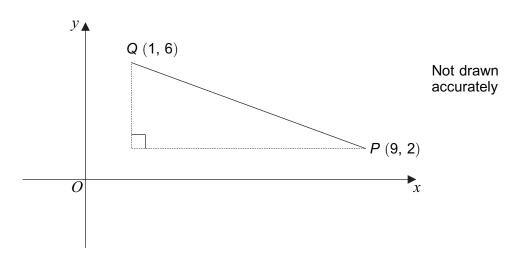
Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1 Here is a sketch of the circle $x^2 + y^2 = 36$

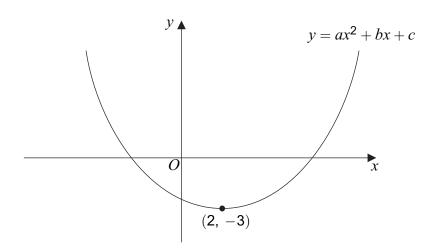
Work out the circumference of the circle.						
	Answer				(3 marks)	


Turn over for the next question

 $y = 5x^3 - 4x^2$

Work out $\frac{dy}{dx}$.

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \dots (2 \text{ marks})$


3

Work out the length of <i>PQ</i> . Give your answer to 3 significations	ant figures.	

PQ = (4 marks)

A sketch of $y = ax^2 + bx + c$ is shown. The minimum point is (2, -3).

For the sketch shown, circle the correct answer in each of the following.

4 (a) The value of a is

zero positive negative (1 mark)

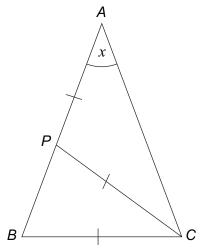
4 (b) The value of c is

zero positive negative (1 mark)

4 (c) The solutions of $ax^2 + bx + c = 0$ are

both zero both positive both negative one positive and one negative

(1 mark)


4 (d) The **number** of solutions of $ax^2 + bx + c = -6$ is

0 1 2 3 (1 mark)

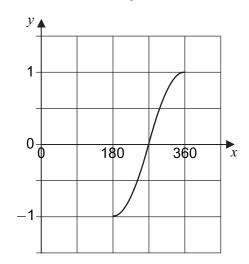
4 (e) The equation of the tangent to $y = ax^2 + bx + c$ at (2, -3) is

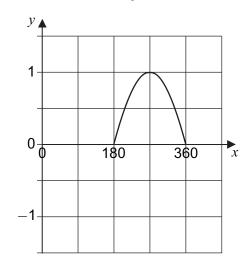
x = 2 y = 2 x = -3 y = -3 (1 mark)

5 ABC is a triangle. P is a point on AB such that AP = PC = BCAngle BAC = x

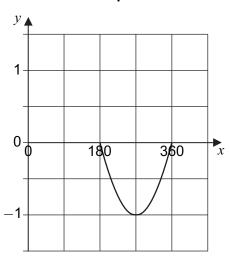
Not drawn accurately

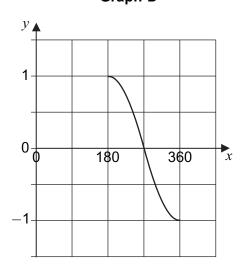
5 (a)	Prove that angle $ABC = 2x$
	(3 marks)
5 (b)	You are also given that $AB = AC$
	Work out the value of x .
	x = degrees (3 marks)


6 (a)	Expand $3x(2x-5y)$
	Answer
6 (b)	Expand and simplify $(3x + 2y)(3x - 4y)$
	Answer(3 marks)
6 (c)	Work out the ratio $(3x + 2y)(3x - 4y) : 3x(2x - 5y)$ when $y = 0$
	Give your answer as simply as possible.
	Answer (2 marks)
7	$1 \leqslant m \leqslant 5$ and $-9 \leqslant n \leqslant 2$
7 (a)	Work out an inequality for $m+n$.
	Answer $\leqslant m+n \leqslant$ (2 marks)
7 (b)	Work out an inequality for $(m+n)^2$.
	Answer $\leq (m+n)^2 \leq$ (2 marks)


Turn over ▶

8 Four graphs are shown for $180^{\circ} \le x \le 360^{\circ}$


Graph A


Graph B

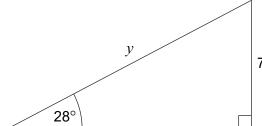
Graph C

Graph D

8 (a) Which graph is $y = \sin x$?

Graph (1 mark)

8 (b) Which graph is $y = \cos x$?


Graph (1 mark)

9	Here is a formula.						
	5t + 3 = 4w(t+2)						
9 (a)	Rearrange the formula to make t the subject.						
	Answer(4 marks)						
9 (b)	Work out the exact value of t when $w = -\frac{1}{8}$						
	Give your answer in its simplest form.						
	t = (3 marks)						

Turn over ▶

An aircraft flies y kilometres in a straight line at an angle of elevation of 28°. The gain in height is 7 kilometres.

Not drawn accurately

7 km

Work out the value	•			
		•••••		
	<i>y</i> =		km	(3 marks)

A sphere has radius *x* centimetres. A hemisphere has radius *y* centimetres. The shapes have equal volumes.

Work out the value of $\frac{y}{x}$.

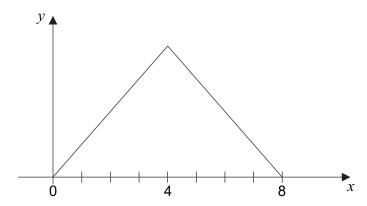
Give your answer in the form $a^{\frac{1}{3}}$ where a is an integer.

 $\frac{y}{x}$ = (3 marks)

12	Expand and simplify $(t+4)^3$
	Answer (3 marks)
13	
	Not drawn accurately
	16 cm 9 cm
	20 cm
	Work out angle x.
	$x = \dots$ degrees (3 marks)

Turn over ▶

14	The sketch shows a circle, centre C , radius 5. The circle passes through the points A $(-2, 8)$ and B $(6, 8)$. The x -axis is a tangent to the circle.
	y A
	A (-2, 8) B (6, 8)
-	
	Work out the equation of the circle.
	An array (A magular)
	Answer (4 marks)


15 (a) f(x) = 3x - 5 for all values of *x*.

Solve $f(x^2) = 43$

.....

Answer (4 marks

15 (b) A sketch of y = g(x) for domain $0 \le x \le 8$ is shown.

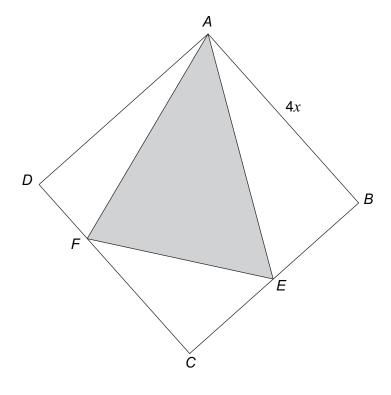
The graph is symmetrical about x = 4The range of g(x) is $0 \le g(x) \le 12$

Work out the function g(x).

$$g(x) = \dots 0 \leqslant x \leqslant 4$$

 $4 < x \le 8$

(5 marks)


16 (a)	Use the factor theorem to show that $(x - 1)$ and $(x - 4)$ are factors of $x^3 - 21x + 20$
	(2 marks)
16 (b)	Show that $(x - 1)$ and $(x - 4)$ are also factors of $x^3 - 10x^2 + 29x - 20$
	(2 marks)
16 (c)	Hence, simplify fully $\frac{x^3 - 21x + 20}{x^3 - 10x^2 + 29x - 20}$
	Answer

17 ABCD is a square of side length 4x.

 ${\it E}$ is the midpoint of ${\it BC}$.

DF:FC = 1:3

Not drawn accurately

You are given that

area of triangle $AEF = kx^2$

Work out the value of k .	

 $k = \dots$ (5 marks)

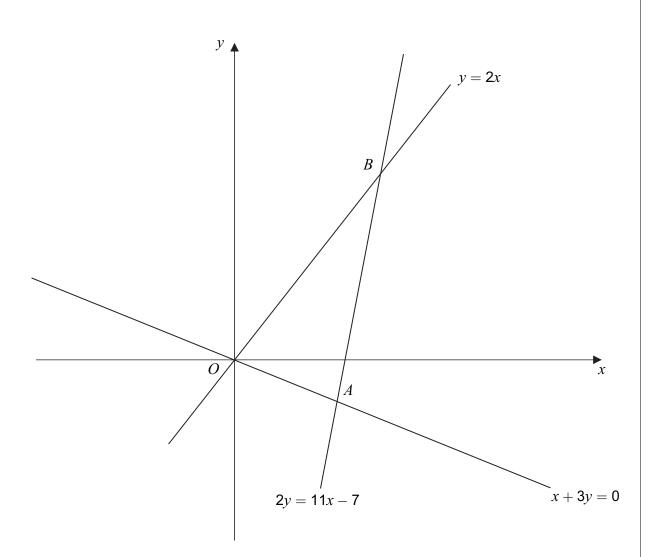
Turn over ▶

18	$(x-5)^2 + a \equiv x^2 + bx + 28$					
	Work out the values of a and b .					
	a= $b=$ (3 marks)					
19	Solve the simultaneous equations					
	$x + y = 4$ $y^2 = 4x + 5$					
	Do not use trial and improvement.					
	Appuar					
	Answer (6 marks)					

20	For what values of	$x ext{ is } y = 15$	$50x - 2x^3$	an increasing	function?	
		Answer				(4 marks)

Turn over for the next question

Turn over ▶


21 The equations of three straight lines are

$$y = 2x$$

$$x + 3y = 0$$

$$2y = 11x - 7$$

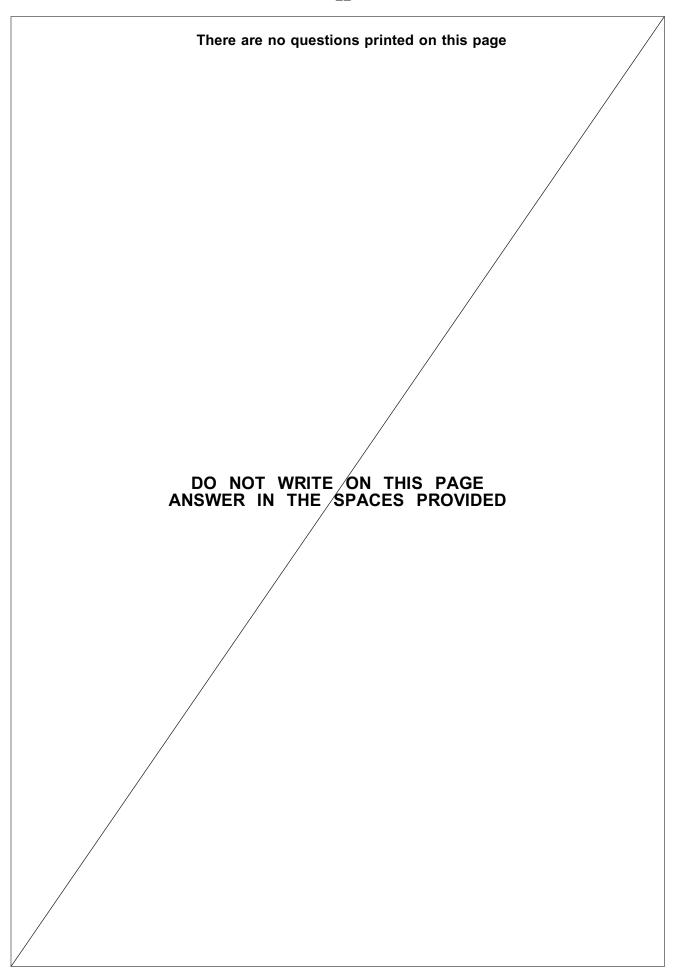
The lines intersect at the points O, A and B as shown on this sketch.

Show that	length $OB = \text{length } DB$	AB			
				(6
	Turn over	for the next	question		

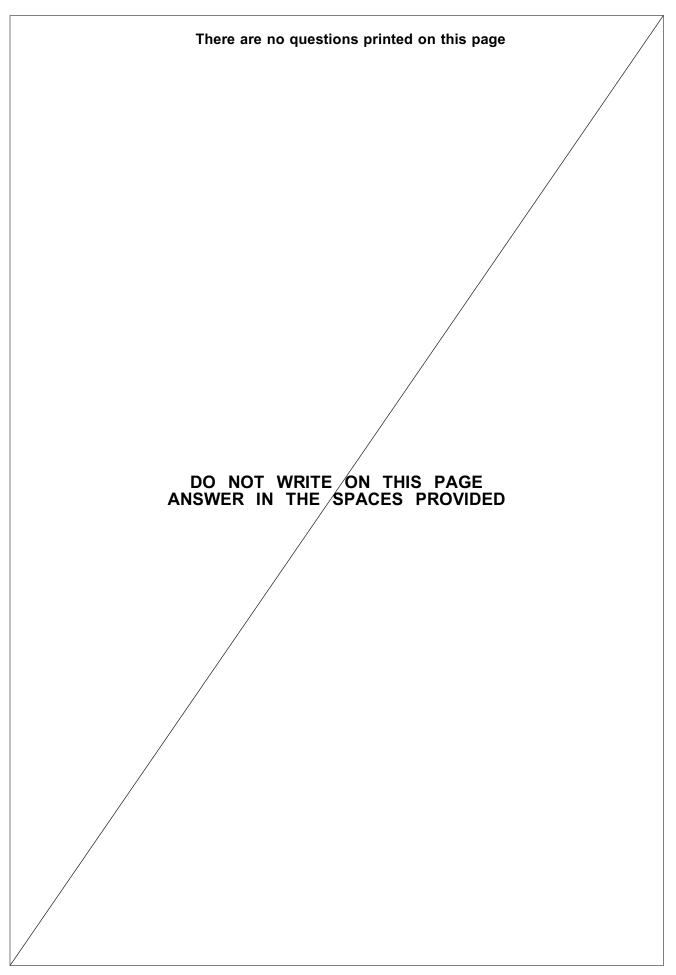
The transformation matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ maps point *P* to point *Q*.

The transformation matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ maps point Q to point R.

Point R is (-4, 3).


Work out the coordinates of point P.

Answer (..... (5 marks)


23	The curve $y = f(x)$ is such that $\frac{dy}{dx} = -x(x-2)^2$
	The stationary points of the curve are at $\left(0, \frac{4}{3}\right)$ and $(2, 0)$.
	Determine the nature of each stationary point. You must show your working.
	(4 marks)

END OF QUESTIONS

